
Microsoft Azure Well-Architected

Maria Theilemann
Cloud Solution Architect | Azure Infrastructure

maria.theilemann@microsoft.com

Reliability

Microsoft Azure Well-Architected Framework

https://aka.ms/wellarchitected/framework

Cost

Optimization

Operational

Excellence

Performance

Efficiency

Reliability Security

Architecture guidance and best practices created for architects, developers, and

solution owners, to improve the quality of their workloads, based on 5 aligned

and connected pillars…

https://aka.ms/wellarchitecture/framework

Architecture guidance and best practices created for architects, developers, and

solution owners, to improve the quality of their workloads, based on 5 aligned

and connected pillars…

Cost

Optimization

Operational

Excellence

Performance

Efficiency

Reliability Security

Learn more https://aka.ms/architecture/framework

Microsoft Azure Well-Architected Framework

https://aka.ms/architecture/framework

The what—

▪ Ensuring availability of services =
the goal for production systems.

▪ End goal = Maintain reliable
systems with the appropriate level
of availability (uptime).

The how—

▪ How production systems achieve reliability.

▪ End goal = not to avoid all failures but to
respond to failure in ways that avoid
downtime and data loss.

Why is reliability important?
Because avoiding failure is impossible in the public cloud

Applications require resilience to respond to failures and deliver reliability

Reliability Resilience

Building reliable systems is a shared responsibility

Your application

Your app or workload, built on the Azure platform.

Resiliency features

Optional Azure capabilities you can enable as needed—high availability, disaster recovery, and backup.

Reliable foundation

Core capabilities built into the Azure platform – how the foundation is designed, operated,
and monitored to ensure availability.

Scope of
Reliability

Reviews

Reliability

Define availability and

recovery requirements

Test with simulations

and forced failovers

Monitor application

health

Respond to failures

and disasters

Building reliable applications in the cloud
Enable systems to recover from failures and continue to function

▪ Use Availability Zones where applicable

to improve reliability and optimize

costs.

▪ Design applications to operate when

impacted by failures.

▪ Use the native resiliency capabilities of

PaaS to support overall app reliability.

▪ Validate that required capacity is within

Azure service scale limits and quotas.

Design for reliability

▪ Test regularly to validate existing

thresholds, targets and assumptions.

▪ Verify how the end-to-end workload

performs under failure conditions.

▪ Conduct load testing with expected

peak volumes to test scalability and

performance under load.

▪ Perform chaos testing by injecting

faults.

Testing overall

availability & resiliency

▪ Define alerts that are actionable and

effectively prioritized.

▪ Create alerts that poll for services

nearing their limits and quotas.

▪ Use application instrumentation to

detect and resolve performance

anomalies.

▪ Troubleshoot issues to gain an

overall view of application health.

Overall monitoring & diagnostics

Design for reliability
Principle: design applications to be resistant to failures

▪ If greater failure isolation than

Availability Zones alone can offer,

you should consider deploying to

multiple regions.

▪ Multiple regions should be used for

failover purposes in a disaster state.

▪ Additional costs—data, networking

and the Azure Site Recovery service

should be considered.

Use Availability Zones

within a region
Design for failure recovery

▪ Resilient application architectures

should be designed to recover

gracefully from failures in alignment

with defined reliability targets.

▪ Define an availability strategy to

capture how the application remains

available when in a failure state.

▪ Define a Business Continuity Disaster

Recovery strategy for the application

and/or its key scenarios.

▪ Use Platform as a Service (PaaS),

which offers native resiliency

capabilities to support overall

application reliability.

▪ Design your application to

automatically scale in and out.

▪ Review Azure subscription and

service limits to validate that required

capacity is within quotas.

Criteria for improving

application reliability

Entire region failure

e.g. natural disaster

Hardware failure

e.g. server rack issue

Entire datacenter failure

e.g. power/network issue

In
fr

a
st

ru
c
tu

re

(a
p

p
li
c
a
ti

o
n

s
a
n

d
 d

a
ta

)
D

a
ta

(s
ta

te
fu

l)
 Data corruption RansomwareAccidental data loss Rogue administrator

Azure Site Recovery / Region Pairs Availability ZonesAvailability SetsPremium Storage

Build and run highly-available
applications with near-zero RPO/RTO

Implement disaster recovery plans with
data residency and minimal RPO/RTO

Backup

Go back to restore a healthy version of the data

C
u

st
o

m
e
r

n
e
e
d

Improved
availability

Industry-leading RPO/RTOSLA 99.99%SLA 99.95%SLA 99.9%

Isolated VM failure

e.g. OS disk HDD issue

Single VM

DatacenterDatacenter Zone

Zone 2 Zone 3

Zone 1

Region

Zone 2 Zone 3

Zone 1

Region

Datacenter 1

Datacenter 2

Region 2

Zone 2 Zone 3

Zone 1

Region 1

Test for availability and resiliency
Principle: define, automate, and test operational processes

▪ Simulation testing involves creating

real-life situations and demonstrates

the effectiveness of proposed

solutions.

▪ Use fault injection testing to check

the system resiliency during failures—

by triggering failures or by simulating

them.

▪ Load testing is crucial for identifying

failures that only happen under load,

(e.g., an overwhelmed back-end

database, or service throttling).

End-to-end workload

testing

Build high availability &

resiliency testing into strategy

▪ Resilient application architectures

should be designed to recover

gracefully from failures in alignment

with defined reliability targets.

▪ Define an availability strategy to

capture how the application remains

available when in a failure state.

▪ Define a Business Continuity Disaster

Recovery strategy for the application

and/or its key scenarios.

▪ Create and fully test a disaster

recovery plan using the actual

resources needed to restore

functionality.

▪ Perform an operational readiness test

for failover to the secondary region

and for failback to the primary region.

▪ Codify the steps required to recover

or failover to a secondary region to

limit the impact of an outage.

Automate testing across BCDR

strategy & prepare for failure

Monitoring application health
Principle: define, automate, and test operational processes

▪ Azure Service Health provides a view

into the health of Azure services and

regions, as well as communications

about outages and planned

maintenance activities.

▪ Azure Resource Health provides

information about the health of

individual and is highly useful when

diagnosing unavailable resources.

▪ Azure dashboards provides a

consolidated view of data from

Application Insights, Log Analytics,

Azure Monitor metrics, and Service

Health.

Azure services & resources

alerts & dashboards

Scaling subscription &

service targets

▪ If your application requires more

storage accounts than are currently

available in your subscription, create

a new subscription with additional

storage accounts.

▪ Identify scalability targets for VMs

including VM size, number of disks,

CPU, and memory.

▪ To avoid data throttling, review your

Azure SQL Database requirements to

ensure that they are adequate.

▪ Create and fully test a disaster recovery

plan using the actual resources needed

to restore functionality.

▪ Perform an operational readiness test

for failover to the secondary region

and for failback to the primary region.

▪ Codify the steps required to recover or

failover to a secondary region to limit

the impact of an outage.

Fully test BCDR plan

Azure Well-Architected
Review
Assess workloads with the pillars of the

Microsoft Azure Well-Architected Framework:

—Understand the Well-Architected level of

your workload environment.

—Follow technical guidance for next steps of

how to create and optimize your workloads.
aka.ms/wellarchitected/review

https://aka.ms/wellarchitected/review

Architect & optimize workloads for success

Well-Architected

Learning Path
(aka.ms/wellarchitected/

learn)

Azure Well-Architected

Framework
(aka.ms/wellarchitected/framework)

Azure Well-Architected

Review
(aka.ms/wellarchitected/review)

Well-Architected Design

Principles
(aka.ms/wellarchitected/

designprinciples)

Azure Architectures
(aka.ms/wellarchitected/

referencearch)

Channel 9 Show
(aka.ms/azenable)

MS Consulting Services

(aka.ms/WAFServices)

https://aka.ms/architecture/learn
https://aka.ms/architecture/framework
https://aka.ms/thereview
https://aka.ms/wellarchitected/designprinciples
https://docs.microsoft.com/en-us/azure/architecture/browse/
https://aka.ms/azenable

Helpful links:

• Resiliency Overview

• Composite SLA

• WAF Assessment

• Backup and Recovery

• Error Handling

• Azure Region Status

https://docs.microsoft.com/en-us/azure/architecture/framework/resiliency/overview
https://docs.microsoft.com/en-us/azure/architecture/framework/resiliency/business-metrics#composite-slas
https://docs.microsoft.com/en-us/assessments/
https://docs.microsoft.com/en-us/azure/architecture/framework/resiliency/backup-and-recovery
https://docs.microsoft.com/en-us/azure/architecture/framework/resiliency/app-design-error-handling
https://status.azure.com/en-us/status

